About Quadratically Connected sequences

Arkady M.Alt

01.03.2016

Abstract

The purpose of this article is to find conditions under which two sequences given by linear recurrences of the second order with constant coefficients are quadratically connected. The reason for this was a series of problems in an Math Olympiad style for the solution of which it was necessary in one form or another establish the quadratic connection between them. The text of the article is accompanied by a large number of problems with variational solutions and generalizations

About quadratically p-q generated sequences.

Definition.

Let p, q be real numbers. Sequence $\left\{x_{n}\right\}$ we will call quadratically (p, q)-generated if $x_{n}=t_{n}^{2}, n \in \mathbb{N} \cup\{0\}$ for some sequence $\left\{t_{n}\right\}$, satisfying $t_{n+1}-p t_{n}+q t_{n-1}=0, n \in \mathbb{N}$.
(such sequence $\left\{t_{n}\right\}$ we will call sequence-generator).

Theorem 1.

Sequence $\left\{x_{n}\right\}$ can be quadratically (p, q)-generated by some sequence $\left\{t_{n}\right\}$ iff sequence $\left\{x_{n}\right\}$ satisfies to
(1) $x_{n+1}-\left(p^{2}-2 q\right) x_{n}+q^{2} x_{n-1}=M q^{n}, n \in \mathbb{N}$, where $x_{0}, x_{1} \geq 0$ and $M=2\left(x_{1}-p \sqrt{x_{1} x_{0}}+q x_{0}\right)$ or equivalently
(2) $x_{n+2}-\left(p^{2}-q\right) x_{n+1}+\left(q p^{2}-q^{2}\right) x_{n}-q^{3} x_{n-1}=0, n \in \mathbb{N}$, with $x_{0}, x_{1} \geq 0$ and $x_{2}=\left(p \sqrt{x_{1}}-q \sqrt{x_{0}}\right)^{2}$.

Proof.

1. Let $x_{n}=t_{n}^{2}, n \in \mathbb{N} \cup\{0\}$ and $t_{n+1}-p t_{n}+q t_{n-1}=0, n \in \mathbb{N}$.

Since $t_{n+1}-p t_{n}+q t_{n-1}=0$ then $\left(t_{n+1}+q t_{n-1}\right)^{2}=\left(p t_{n}\right)^{2} \Longleftrightarrow$ $t_{n+1}^{2}+2 p t_{n+1} t_{n-1}+q^{2} t_{n-1}^{2}=p^{2} t_{n}^{2}$.
From the other hand

$$
\begin{aligned}
& t_{n+1} t_{n-1}-t_{n}^{2}=t_{n-1}\left(p t_{n}-q t_{n-1}\right)-t_{n}\left(p t_{n-1}-q t_{n-2}\right)= \\
& q\left(t_{n} t_{n-2}-t_{n-1}^{2}\right), n>1 \text { implies } t_{n+1} t_{n-1}-t_{n}^{2}=q^{n-1}\left(t_{2} t_{0}-t_{1}^{2}\right) \Longleftrightarrow \\
& t_{n+1} t_{n-1}=t_{n}^{2}-q^{n-1}\left(t_{1}^{2}-t_{2} t_{0}\right)=t_{n}^{2}-q^{n-1}\left(x_{1}-p \sqrt{x_{1} x_{0}}+q x_{0}\right)=t_{n}^{2}-\frac{M q^{n-1}}{2} .
\end{aligned}
$$

Then, $2 q t_{n+1} t_{n-1}=2 q t_{n}^{2}-2 M q^{n}$ and, therefore,

$$
t_{n+1}^{2}+2 q t_{n+1} t_{n-1}+b^{2} t_{n-1}^{2}=q^{2} t_{n}^{2} \Longleftrightarrow t_{n+1}^{2}+2 q t_{n}^{2}-2 M q^{n}+q^{2} t_{n-1}^{2}=p^{2} t_{n}^{2} \Longleftrightarrow
$$

(3) $\quad t_{n+2}^{2}-\left(p^{2}-2 q\right) t_{n+1}^{2}+q^{2} t_{n}^{2}=M q^{n}, n \in \mathbb{N}$.

Substitution $t_{n}=\sqrt{x_{n}}$ in (3) gives (1).
Due (3) we have
$t_{n+2}^{2}-\left(p^{2}-2 q\right) t_{n+1}^{2}+q^{2} t_{n}^{2}-q\left(t_{n+1}^{2}+2 q t_{n}^{2}-M q^{n}+q^{2} t_{n-1}^{2}\right)=0 \Longleftrightarrow$
$t_{n+2}^{2}-\left(p^{2}-q\right) t_{n+1}^{2}+\left(q p^{2}-q^{2}\right) t_{n}^{2}-q^{3} t_{n-1}^{2}=0 \Longrightarrow$ (2) and, by (1)
$x_{2}=\left(p^{2}-2 q\right) x_{1}-q^{2} x_{0}+M q=p^{2} x_{1}-2 q x_{1}-q^{2} x_{0}+2 q x_{1}-2 p q \sqrt{x_{1} x_{0}}+$
$2 q^{2} x_{0}=\left(p \sqrt{x_{1}}-q \sqrt{x_{0}}\right)^{2}$.
2. Let $\left\{x_{n}\right\}$ be sequence defined by (2) with $x_{0}, x_{1} \geq 0$ and $x_{2}=\left(p \sqrt{x_{1}}-q \sqrt{x_{0}}\right)^{2}$, and let $\left\{t_{n}\right\}$ be a sequence which satisfy to the recurrence
$t_{n+1}-p t_{n}+q t_{n-1}=0, n \in \mathbb{N}$, where $t_{0}:=\sqrt{x_{0}}, t_{1}:=\sqrt{x_{1}}$.
We will prove $x_{n}=t_{n}^{2}, n \in \mathbb{N}$ using Math Induction.

Base of Math Induction.

We have $x_{0}=t_{0}^{2}, x_{1}=t_{1}^{2}, x_{2}=\left(p \sqrt{x_{1}}-q \sqrt{x_{0}}\right)^{2}=\left(p t_{1}-q t_{0}\right)^{2}=t_{2}^{2}$.

Step of Math Induction.

For any from supposition $x_{n-1}=t_{n-1}^{2}, x_{n}=t_{n}^{2}, x_{n+1}=t_{n+1}^{2} \quad$ follows

$$
x_{n+2}=\left(p^{2}-q\right) x_{n+1}=\left(q p^{2}-q^{2}\right) x_{n}+q^{3} x_{n-1}=
$$

$$
\left(p^{2}-q\right) t_{n+1}^{2}-\left(q p^{2}-q^{2}\right) t_{n}^{2}+q^{3} t_{n-1}^{2}=t_{n+2}^{2}
$$

As a corollary note that $\left\{x_{n}\right\}$ can be quadratically $(p, 1)$-generated by some sequence $\left\{t_{n}\right\}$ iff sequence $\left\{x_{n}\right\}$ satisfies to

$$
x_{n+1}-\left(p^{2}-2\right) x_{n}+x_{n-1}=M, n \in \mathbb{N}
$$

where $x_{0}, x_{1} \geq 0$ and $M=2\left(x_{1}-p \sqrt{x_{1} x_{0}}+x_{0}\right)$.
Another example when quadratically (p, q)-generated sequence $\left\{x_{n}\right\}$ can be defined by linear second degree recurrence with the constant in the right hand side we obtain in the case $p=r+1$ and $q=r, r \in \mathbb{R}$. Indeed, in this case

$$
\begin{aligned}
& \quad(\mathbf{2}) \Longleftrightarrow x_{n+2}-\left(r^{2}+r+1\right) x_{n+1}+\left(r^{3}+r^{2}+r\right) x_{n}-r^{3} x_{n-1}=0 \Longleftrightarrow \\
& x_{n+2}-\left(r^{2}+r\right) x_{n+1}+r^{3} x_{n}-x_{n+1}+\left(r^{2}+r\right) x_{n}-r^{3} x_{n-1}=0 \Longleftrightarrow \\
& x_{n+2}-\left(r^{2}+r\right) x_{n+1}+r^{3} x_{n}=x_{n+1}-\left(r^{2}+r\right) x_{n}+r^{3} x_{n-1} . \\
& \text { Hence, } x_{n+1}-\left(r^{2}+r\right) x_{n}+r^{3} x_{n-1}=x_{2}-\left(r^{2}+r\right) x_{1}+r^{3} x_{0}=c=\text { const. }
\end{aligned}
$$

Since $x_{2}=\left((r+1) \sqrt{x_{1}}-r \sqrt{x_{0}}\right)^{2}$ then

$$
\begin{aligned}
& c=(r+1)^{2} x_{1}+r^{2} x_{0}-2 r(r+1) \sqrt{x_{0} x_{1}}-\left(r^{2}+r\right) x_{1}+r^{3} x_{0}= \\
& (r+1)\left(x_{1}-2 r \sqrt{x_{0} x_{1}}+r^{2} x_{0}\right)=(r+1)\left(\sqrt{x_{1}}-r \sqrt{x_{0}}\right)^{2}
\end{aligned}
$$

Thus $x_{n+1}-\left(r^{2}+r\right) x_{n}+r^{3} x_{n-1}=(r+1)\left(\sqrt{x_{1}}-r \sqrt{x_{0}}\right)^{2}, n \in \mathbb{N}$.
Sequence-generator $\left\{t_{n}\right\}$ satisfy to recurrence
$t_{n+1}-(r+1) t_{n}+r t_{n-1}=0$
and since $t_{n+1}-r t_{n}=t_{n}-r t_{n-1}$ then $t_{n+1}-r t_{n}=t_{1}-r t_{0}$.
Let $d:=t_{1}-r t_{0}$ then $t_{n+1}-(r+1) t_{n}+r t_{n-1}=0 \Longleftrightarrow t_{n+1}=r t_{n}+d$.
(Or, the same result can be obtained by the other way:
Since $t_{n+1}-(r+1) t_{n}+r t_{n-1}=0, n \in \mathbb{N} \Longleftrightarrow t_{n+1}=r t_{n}+d, n \in \mathbb{N} \cup\{0\}$, where $d:=t_{1}-r t_{0}$, then

$$
\left(t_{n+1}-d\right)^{2}=r^{2} t_{n}^{2} \Longleftrightarrow t_{n+1}^{2}-r^{2} t_{n}^{2}=2 d t_{n+1}-d^{2}, n \in \mathbb{N} \cup\{0\}
$$

and, therefore,
$t_{n+1}^{2}-r^{2} t_{n}^{2}-r\left(t_{n}^{2}-r^{2} t_{n-1}^{2}\right)=2 d r t_{n+1}-d^{2}-2 d r_{n+1}-2 d r^{2} t_{n}+r d^{2}=$ $2 d\left(t_{n+1}-r t_{n}\right)-d^{2}+r d^{2}=d^{2}(r+1) \Longrightarrow$ $t_{n+1}^{2}-\left(r^{2}+r\right) t_{n}^{2}+r^{3} t_{n-1}=d^{2}(r+1) \Longleftrightarrow$
$x_{n+1}-\left(r^{2}+r\right) x_{n}+r^{3} x_{n-1}=(r+1)\left(\sqrt{x_{1}}-r \sqrt{x_{0}}\right)^{2}, n \in \mathbb{N}$.
Naturally ask a following question:
For which p, q sequence $\left\{x_{n}\right\}$ defined by second degree linear recurrence $x_{n+1}-\mu x_{n}+\lambda x_{n-1}=\sigma$, where μ, λ, σ some constants is quadratically (p, q)-generated?

For any polynomial $P(x)=x^{m}+p_{1} x^{m-1}+p_{2} x^{n-2}+\ldots+p_{m-1} x+p_{m}$ and any sequence $\left\{a_{n}\right\}$ let
$L_{P}\left(a_{n}\right):=a_{n+m-1}+p_{2} a_{n+m-2}+\ldots+p_{m-1} a_{n}+a_{n-1}, n \in \mathbb{N}$.
Then for given sequence $\left\{b_{n}\right\}$ recurrence
$a_{n+m-1}+p_{2} a_{n+m-2}+\ldots+p_{m-1} a_{n}+a_{n-1}=b_{n}$
get short notation $L_{P}\left(a_{n}\right)=b_{n}, n \in \mathbb{N}$.
Note, the following properties of this notation:

1. $L_{P+Q}\left(a_{n}\right)=L_{P}\left(a_{n}\right)+L_{Q}\left(a_{n}\right)$, for two polynomial $P(x), Q(x)$;
2. $L_{c P}\left(a_{n}\right)=c L_{P}\left(a_{n}\right)$ for constant c and polynomial $P(x)$;
3. if $Q(x)=x P(x)$ then $L_{Q}\left(a_{n}\right)=L_{P}\left(a_{n+1}\right)$.

Lemma.

Let $P(x)=x^{3}-\alpha x^{2}+\beta x-\gamma$ such that $P(0) \neq 0$ and $Q(x)=x^{2}-\lambda x+\mu$.
Then any solution of $L_{Q}\left(x_{n}\right)=\sigma$ be solution of $L_{P}\left(x_{n}\right)=0$ iff
$P(x)=(x-1) Q(x)$ i.e. $P(1)=0$ and $\alpha=\lambda+1, \beta=\mu+\lambda, \gamma=\mu$.

Proof.

Suffieciency.

If $P(x)=(x-1) Q(x)=x Q(x)-Q(x)$ then

$$
L_{P}\left(x_{n}\right)=L_{Q}\left(x_{n+1}\right)-L_{Q}\left(x_{n}\right)=\sigma-\sigma=0
$$

Necessity.
Let $L_{Q}\left(x_{n}\right)=\sigma \Longrightarrow L_{P}\left(x_{n}\right)=0$, where $\left\{x_{n}\right\} \neq 0$. Then, since
$P(x)=(x-1) Q(x)+P(1)$ we have
$0=L_{P}\left(x_{n}\right)=L_{Q}\left(x_{n+1}\right)-L_{Q}\left(x_{n}\right)+P(1) x_{n}=$
$\sigma-\sigma+P(1) x_{n}=P(1) x_{n} \Longrightarrow P(1)=0$.
Let $P(x):=x^{3}-\left(p^{2}-q\right) x^{2}+\left(p^{2} q-q^{2}\right) x-q^{3}$.
Due to Theorem 1, sequence $\left\{x_{n}\right\}$, defined by recurrence $x_{n+1}-\lambda x_{n}+\mu x_{n-1}=\sigma$ is quadratically (p, q)-generated by $\left\{t_{n}\right\}$
iff $L_{P}\left(x_{n}\right)=0$ and $x_{0}, x_{1} \geq 0, x_{2}=\left(p \sqrt{x_{1}}-q \sqrt{x_{0}}\right)^{2}$ and
by Lemma it is possible iff
$P(1)=0 \Longleftrightarrow 1-\left(p^{2}-q\right)+\left(p^{2} q-q^{2}\right)-q^{3}=0 \Longleftrightarrow(1-q)\left((1+q)^{2}-p^{2}\right)=0 \Longleftrightarrow\left[\begin{array}{c}1+q-q^{2}-q^{3}- \\ (1-q) p^{2}=0 \Longleftrightarrow \\ |p|=|q+1|\end{array}\right.$.
And also, by Lemma we have $\lambda=p^{2}-q-1=q\left(p^{2}-q-q^{2}\right), \mu=q^{3}$
and $\sigma=x_{2}-\left(p^{2}-q-1\right) x_{1}+q^{3} x_{0}$.
If $q=1$ and $p \in \mathbb{R}$ then
$\lambda=p^{2}-2, \mu=1, \sigma=\left(p \sqrt{x_{1}}-\sqrt{x_{0}}\right)^{2}-\left(p^{2}-2\right) x_{1}+x_{0}=$
$2\left(x_{0}-p \sqrt{x_{0} x_{1}}+x_{1}\right)$;
If $q \in \mathbb{R}$ and $|p|=|q+1|$ then $\lambda=q\left(p^{2}-q-q^{2}\right)=q(q+1), \mu=q^{3}$,
$\sigma=\left(p \sqrt{x_{1}}-q \sqrt{x_{0}}\right)^{2}-\left(q^{2}+q\right) x_{1}+q^{3} x_{0}=(q+1)^{2} x_{1}+q^{2} x_{0}-2 q p \sqrt{x_{0} x_{1}}-$
$\left(q^{2}+q\right) x_{1}+q^{3} x_{0}=\left((q+1) x_{1}-2 q p \sqrt{x_{0} x_{1}}+q^{2}(q+1) x_{0}\right)=$

$$
\left\{\begin{array}{c}
(q+1)\left(\sqrt{x_{1}}-q \sqrt{x_{0}}\right)^{2}, \text { if } p=q+1 \\
(q+1)\left(\sqrt{x_{1}}+q \sqrt{x_{0}}\right)^{2}, \text { if } p=-q-1
\end{array}\right.
$$

Thus, we obtain following
Theorem 2. Only three kinds of sequences $\left\{x_{n}\right\}$ defined by recurrence
$x_{n+1}-\lambda x_{n}+\mu x_{n-1}=\sigma, n \in \mathbb{N}$ can be quadratically (p, q)-generated:
i. Sequence $\left\{x_{n}\right\}$ defined by

$$
x_{n+1}-\left(p^{2}-2\right) x_{n}+x_{n-1}=2\left(x_{0}-p \sqrt{x_{0} x_{1}}+x_{1}\right), n \in \mathbb{N}, x_{0}, x_{1} \geq 0
$$

Then $x_{n}=t_{n}^{2}, n \in \mathbb{N} \cup\{0\}$, where

$$
t_{n+1}-p t_{n}+q_{n-1}=0, n \in \mathbb{N}, t_{0}=\sqrt{x_{0}}, t_{1}=\sqrt{x_{1}}
$$

ii. Sequence $\left\{x_{n}\right\}$ defined by

$$
x_{n+1}-\left(q^{2}+q\right) x_{n}+q^{3} x_{n-1}=(q+1)\left(\sqrt{x_{1}}-q \sqrt{x_{0}}\right)^{2}, n \in \mathbb{N}, x_{0}, x_{1} \geq 0
$$

Then $x_{n}=t_{n}^{2}, n \in \mathbb{N} \cup\{0\}$, where

$$
t_{n+1}-(q+1) t_{n}+q_{n-1}=0, n \in \mathbb{N}, t_{0}=\sqrt{x_{0}}, t_{1}=\sqrt{x_{1}}
$$

iii. Sequence $\left\{x_{n}\right\}$ defined by

$$
x_{n+1}-\left(q^{2}+q\right) x_{n}+q^{3} x_{n-1}=(q+1)\left(\sqrt{x_{1}}+q \sqrt{x_{0}}\right)^{2}, n \in \mathbb{N}, x_{0}, x_{1} \geq 0
$$

Then $x_{n}=t_{n}^{2}, n \in \mathbb{N} \cup\{0\}$, where

$$
t_{n+1}+(q+1) t_{n}+q_{n-1}=0, n \in \mathbb{N}, t_{0}=\sqrt{x_{0}}, t_{1}=\sqrt{x_{1}}
$$

Applications.

Problem 1.(O86.MR, Proposed by Brian Bradie, Christopher Newport University, USA).
The sequence $\left\{a_{n}\right\}$ is defined by $a_{1}=1, a_{2}=3$ and $a_{n+1}=6 a_{n}-a_{n-1}$ for all $n \geq 1$. Prove that $a_{n}+(-1)^{n}$ is a perfect square for all $n \geq 1$.

Solution.

Using $a_{1}=1, a_{2}=3$ and $a_{n+1}=6 a_{n}-a_{n-1}$ we can define correctly a_{0} as $6 a_{1}-a_{2}=3$.Let $x_{n}:=a_{n}+(-1)^{n}$ then $x_{0}=4, x_{1}=0$ and substitution $a_{n}=x_{n}+(-1)^{n+1}$ in $a_{n+1}-6 a_{n}+a_{n-1}=0$ gives us recurrense $x_{n+1}-6 x_{n}+x_{n-1}=8(-1)^{n+1}, n \in \mathbb{N}$ and $x_{0}=4, x_{1}=0$.
Easy to see that for $q=-1, p=4$ we have $p^{2}-2 q=6, q^{2}=1, M=x_{1}-p \sqrt{x_{1} x_{0}}+q x_{0}=-4$ and, accordingly to the Theorem 1, $x_{n}=t_{n}^{2}, n \geq 1$, where
$t_{n+1}-4 t_{n}-t_{n-1}=0, n \geq 1$ and $t_{0}=2, t_{1}=0$.

Remark (generator of the similar problems).

For any real a, b, p, q where $p^{2} \neq 4 q$ let sequence $\left\{a_{n}\right\}$ be defined by

$$
a_{n+1}-\left(p^{2}-2 q\right) a_{n}+q^{2} a_{n-1}=0, n \in \mathbb{N}
$$

and initial conditions $a_{0}=a^{2}+c, a_{1}=b^{2}+c q$, where

$$
c=\frac{2\left(b^{2}-p b a+q a^{2}\right)}{4 q-p^{2}}
$$

Then $a_{n}+c q^{n}=t_{n}^{2}, n \in \mathbb{N} \cup\{0\}$, where sequence $\left\{t_{n}\right\}$ satisfy

$$
t_{n+1}-p t_{n}+q t_{n-1}=0, n \in \mathbb{N} \text { and } t_{0}=a, t_{1}=b
$$

Indeed, easy to see that $x_{n}:=a_{n}+c q^{n}$ satisfy

$$
x_{n+1}-\left(p^{2}-2 q\right) x_{n}+q^{2} x_{n-1}=M q^{n}, n \in \mathbb{N}
$$

where $x_{0}=t_{0}^{2}, x_{1}=t_{1}^{2}, M=2\left(t_{1}^{2}-p t_{1} t_{0}+q t_{0}^{2}\right)$ and, therefore, accordingly to Theorem1 sequence $\left\{x_{n}\right\}$ is quadratically (p,q)-generated.

Problem 2.
Let sequence $\left(b_{n}\right)$ satisfy $b_{n}=\frac{b_{n+1}+b_{n-1}}{98}$ for any $n \in \mathbb{N}$ and $b_{0}=b_{1}=5$.
Then $\frac{b_{n}+1}{6}$ is square of integer for any $n \in \mathbb{N} \cup\{0\}$.

Solution1.

Let $x_{n}:=\frac{\dot{b}_{n}+1}{6}$ then $x_{0}=x_{1}=1$ and by substitution $b_{n}=6 x_{n}-1$
in recurrence $b_{n+1}-98 b_{n}+b_{n-1}=0$ we obtain for $\left\{x_{n}\right\}$
following recurrence

$$
x_{n+1}-98 x_{n}+x_{n-1}=-16, n \in \mathbb{N} .
$$

Accordingly to Theorem 2,case i. we clame $p^{2}-2=98$ and

$$
\begin{aligned}
& 2\left(x_{0}-p \sqrt{x_{0} x_{1}}+x_{1}\right)=-16 \Longleftrightarrow \\
& p= \pm 10 \text { and } 2-p=-8 \Longleftrightarrow p=10 .
\end{aligned}
$$

Thus $x_{n}=t_{n}^{2}, n \in \mathbb{N} \cup\{0\}$, where $t_{n+1}-10 t_{n}+t_{n-1}=0, n \in \mathbb{N}$ and $t_{0}=t_{1}=1$.

Remark (another solution).

Since b_{n} positive for all $n \in \mathbb{N} \cup\{0\}$, then we can define $t_{n}:=\sqrt{\frac{b_{n}+1}{6}}$.
Then $\left(t_{n+1}+t_{n-1}\right)^{2}=\frac{b_{n+1}+b_{n-1}+2+2 \sqrt{\left(b_{n+1}+1\right)\left(b_{n-1}+1\right)}}{6}=$
$=\frac{98 b_{n}+2+2 \sqrt{\left(b_{n+1} b_{n-1}+b_{n+1}+b_{n-1}+1\right)}}{6}=\frac{98 b_{n}+2+2 \sqrt{b_{n+1} b_{n-1}+98 b_{n}+1}}{6}$.
Since $b_{n+1} b_{n-1}-b_{n}^{2}=b_{2} b_{0}-b_{1}^{2}=2400$ then we have
$\left(t_{n+1}+t_{n-1}\right)^{2}=\frac{98 b_{n}+2+2 \sqrt{b_{n}^{2}+98 b_{n}+2401}}{6}=\frac{98 b_{n}+2+2 \sqrt{\left(b_{n}+49\right)^{2}}}{6}=$
$\frac{98 b_{n}+2+2\left(b_{n}+49\right)}{6}=\frac{50}{3}\left(b_{n}+1\right)=\left(10 t_{n}\right)^{2}$.Thus, $t_{n+1}+t_{n-1}=10 t_{n}$ and
since $t_{0}=t_{1}=1$ we conclude that t_{n} is integer for all $n \in \mathbb{N} \cup\{0\}$.

Generalization. (Generator of this kind of problems)

Theorem 3.

Let sequence $\left\{t_{n}\right\}$ satisfy $t_{n+1}-p t_{n}+t_{n-1}=0, n \in \mathbb{N}$ with $t_{0}=t_{1}=t$, where $p^{2} \neq 4$ and sequence $\left\{a_{n}\right\}$ satisfy $a_{n+1}-r a_{n}+s a_{n-1}=0, n \in \mathbb{N}$ with $a_{0}=a_{1}=a$.
Then, $a_{n}=k t_{n}^{2}+l$ for some k, l iff $s=1, r=p^{2}-2, k=\frac{a(p+2)}{p t^{2}}, l=-\frac{2 a}{p}$.

Proof.

Let $x_{n}:=\frac{a_{n}-l}{k}, n \in \mathbb{N} \cup\{0\}$ then $x_{0}=x_{1}=\frac{a-l}{k}$ and, by substitution $a_{n}=k x_{n}+l$ in $a_{n+1}-r a_{n}+s a_{n-1}=0, n \in \mathbb{N}$, we obtain for $\left\{x_{n}\right\}$ following recurrence

$$
x_{n+1}-r x_{n}+s x_{n-1}=\frac{l(r-s-1)}{k}, n \in \mathbb{N} .
$$

By Theorem $1 a_{n}=k t_{n}^{2}+l \Longleftrightarrow x_{n}=t_{n}^{2}, n \in \mathbb{N} \cup\{0\} \Longleftrightarrow$ $s=1, r=p^{2}-2, \frac{l(r-s-1)}{k}=2\left(t_{1}^{2}-p t_{1} t_{0}+t_{0}^{2}\right)=2 t^{2}(2-p), \frac{a-l}{k}=t^{2}$.
Thus we have $\frac{l\left(p^{2}-4\right)}{k}=2 t^{2}(2-p) \Longleftrightarrow k t^{2}=-\frac{l(p+2)}{2}$ and, since $a-l=k t^{2}$ then $-\frac{l(p+2)}{2}=a-l \Longleftrightarrow l=-\frac{2 a}{p}$ and, therefore,

$$
k=-\frac{l(p+2)}{2}=\frac{a(p+2)}{p t^{2}}
$$

Corollary.

If $a_{n+1}-\left(p^{2}-2\right) a_{n}+a_{n-1}=0, n \in \mathbb{N}$ and $a_{0}=a_{1}=a \neq 0$,
where $a, p \in \mathbb{Z}$ and $|p| \neq 2$, then, $\frac{t^{2} p a_{n}}{a(p+2)}+\frac{2 t^{2}}{p+2}$ is square
of integer for any $n \in \mathbb{N} \cup\{0\}$.
Problem 3.
Let $a_{1}=1, a_{n+1}=2 a_{n}+\sqrt{3 a_{n}^{2}-2}, n \in \mathbb{N}$. Prove that all term of this sequence are integers.

Solution 1.

Since $a_{n} \geq 1 \Longrightarrow a_{n+1}-2 a_{n}>0$ we have $a_{n+1}=2 a_{n}+\sqrt{3 a_{n}^{2}-2} \Longleftrightarrow$ $\left(a_{n+1}-2 a_{n}\right)^{2}=3 a_{n}^{2}-2 \Longleftrightarrow a_{n+1}^{2}-4 a_{n+1} a_{n}+4 a_{n}^{2}=3 a_{n}^{2}-2 \Longleftrightarrow$
$a_{n+1}^{2}-4 a_{n+1} a_{n}+a_{n}^{2}=-2 \Longrightarrow a_{n}^{2}-4 a_{n} a_{n-1}+a_{n-1}^{2}=-2$.Hereof $a_{n+1}^{2}-4 a_{n+1} a_{n}+a_{n}^{2}-\left(a_{n}^{2}-4 a_{n} a_{n-1}+a_{n-1}^{2}\right)=0 \Longleftrightarrow$ $a_{n+1}^{2}-a_{n-1}^{2}-4 a_{n}\left(a_{n+1}-a_{n-1}\right)=0 \Longleftrightarrow$ $\left(a_{n+1}-a_{n-1}\right)\left(a_{n+1}-4 a_{n}+a_{n-1}\right)=0 \Longleftrightarrow$ $a_{n+1}-4 a_{n}+a_{n-1}=0$, since $a_{n+1}>a_{n-1}$.
From the other hand, if $a_{n+1}-4 a_{n}+a_{n-1}=0$, then we obtain
$a_{n+1}^{2}-4 a_{n+1} a_{n}+a_{n}^{2}=a_{n}^{2}-4 a_{n} a_{n-1}+a_{n-1}^{2} \Longrightarrow$
$a_{n}^{2}-4 a_{n} a_{n-1}+a_{n-1}^{2}=a_{2}^{2}-4 a_{2} a_{1}+a_{1}^{2}=3^{2}-12+1=-2$.

Solution 2.

About quadratically p-q generated sequences.

Let $t_{n}:=\sqrt{3 a_{n}^{2}-2}$ then $a_{n+1}=2 a_{n}+t_{n}$ and from $t_{n+1}^{2}=3 a_{n+1}^{2}-2=$ $3\left(2 a_{n}+t_{n}\right)^{2}-2=12 a_{n}^{2}+12 a_{n} t_{n}+3 t_{n}^{2}-2=9 a_{n}^{2}+12 a_{n} t_{n}+3 t_{n}^{2}+\left(3 a_{n}^{2}-2\right)=$ $\left(3 a_{n}+2 t_{n}\right)^{2}$ follows $t_{n+1}=3 a_{n}+2 t_{n}$.
From system $\left\{\begin{array}{c}a_{n+1}=2 a_{n}+t_{n} \\ t_{n+1}=3 a_{n}+2 t_{n}\end{array}\right.$, by substitution $t_{n}=a_{n+1}-2 a_{n}$ in the second recurrence, we obtain
$\left.a_{n+2}-2 a_{n+1}=3 a_{n}+2\left(a_{n+1}-2 a_{n}\right) \Longleftrightarrow a_{n+1}-4 a_{n}+a_{n-1}=0\right)$.

Generalization.(Generator of this kind of problems)

Let sequence $\left\{t_{n}\right\}$ defined by $t_{n+1}-2 p t_{n}+t_{n-1}=0, n \in \mathbb{N}$, where $p>1, t_{1}>0$ and $p t_{1} \geq t_{0}$.
Since $p>1$ and $p t_{1} \geq t_{0}$ then $t_{2}-p t_{1}=p t_{1}-t_{0} \geq 0$.
Using $t_{2} \geq p t_{1}$ and $t_{1}>0$ as a base of Math Induction and for any $n \geq 1$ assuming that $t_{n+1} \geq p t_{n}$ and $t_{n}>0$, we obtain $t_{n+1}>0$ and

$$
t_{n+2}-p t_{n+1}=p t_{n+1}-t_{n} \geq\left(p^{2}-1\right) t_{n}>0
$$

Multiplying $t_{n+1}+t_{n-1}=2 p t_{n}$ by $t_{n+1}-t_{n-1}$ we obtain $t_{n+1}^{2}-t_{n-1}^{2}=2 p t_{n} t_{n+1}-2 p t_{n-1} t_{n} \Longleftrightarrow$ $t_{n+1}^{2}-2 p t_{n} t_{n+1}+t_{n}^{2}=t_{n}^{2}-2 p t_{n-1}+t_{n-1}^{2}, n \in \mathbb{N}$.
Hence, $t_{n+1}^{2}-2 p t_{n} t_{n+1}+t_{n}^{2}=c, n \in \mathbb{N}$, where $c=t_{1}^{2}-2 p t_{1} t_{0}+t_{0}^{2}$
and $t_{n+1}^{2}-2 p t_{n} t_{n+1}+t_{n}^{2}=c \Longleftrightarrow\left(t_{n+1}-p t_{n}\right)^{2}=\left(p^{2}-1\right) t_{n}^{2}+c \Longleftrightarrow$ $t_{n+1}=p t_{n}+\sqrt{\left(p^{2}-1\right) t_{n}^{2}+c}, n \in \mathbb{N}$,
since $t_{n+1}>p t_{n}, n \in \mathbb{N}$ and

$$
\left(p^{2}-1\right) t_{n}^{2}+c>\left(p^{2}-1\right) t_{1}^{2}+t_{1}^{2}-2 p t_{1} t_{0}+t_{0}^{2}=\left(p t_{1}-t_{0}\right)^{2} \geq 0
$$

Opposite, let now $\left\{t_{n}\right\}$ be a sequence defined by

$$
t_{n+1}=p t_{n}+\sqrt{\left(p^{2}-1\right) t_{n}^{2}+c}, n \in \mathbb{N}
$$

where given $p>1, t_{1}>0$ and c such $\left(p^{2}-1\right) t_{1}^{2}+c \geq 0$.
Then $\left\{t_{n}\right\}=\left\{t_{n}\right\}$ satisfy $t_{n+1}-2 p t_{n}+t_{n-1}=0, n \in \mathbb{N}$ with

$$
t_{0}=p t_{1}-\sqrt{\left(p^{2}-1\right) t_{1}^{2}+c}
$$

Herewith $t_{0} \leq p t_{1}$ and $c=t_{1}^{2}-2 p t_{1} t_{0}+t_{0}^{2}$.
Indeed, then $\left\{t_{n}\right\}$ satisfy to $t_{n+1}^{2}-2 p t_{n} t_{n+1}+t_{n}^{2}=c, n \in \mathbb{N}$, and since
$t_{n+1} \geq p t_{n}$, we obtain $t_{n+2}>t_{n}, n \in \mathbb{N}$ and
$t_{n+2}^{2}-2 p t_{n+1} t_{n+2}+t_{n+1}^{2}-\left(t_{n+1}^{2}-2 p t_{n} t_{n+1}+t_{n}^{2}\right)=0 \Longleftrightarrow$
$t_{n+2}^{2}-t_{n}^{2}=2 p t_{n+1} t_{n+2}-2 p t_{n} t_{n+1} \Longleftrightarrow$
$\left(t_{n+2}-t_{n}\right)\left(t_{n+2}+t_{n}-2 p t_{n+1}\right)=0 \Longleftrightarrow t_{n+2}+t_{n}-2 p t_{n+1}=0, n \in \mathbb{N}$.
Since $t_{2}=p t_{1}+\sqrt{\left(p^{2}-1\right) t_{1}^{2}+c}$ then
$t_{0}=2 p t_{1}-t_{2}=p t_{1}-\sqrt{\left(p^{2}-1\right) t_{1}^{2}+c} \leq p t_{1}$ and $c=t_{1}^{2}-2 p t_{1} t_{0}+t_{0}^{2}$.
Thus we obtaine the following theorem and corollary:

Theorem 4.

Let $a>0, p>1$ and c such that $\left(p^{2}-1\right) a^{2}+c \geq 0$.
Then sequence $\left\{a_{n}\right\}$ defined by $a_{n+1}=p a_{n}+\sqrt{\left(p^{2}-1\right) a_{n}^{2}+c}, n \in \mathbb{N}$ with $a_{1}=a$ can be defined by recurrence $a_{n+1}-2 p a_{n}+a_{n-1}=0$ with initial conditions $a_{1}=a$ and $a_{0}=p a-\sqrt{\left(p^{2}-1\right) a^{2}+c}$;
Corollary.
Let a be natural number and let p and c be integers such that $p>1$ and
$\left(p^{2}-1\right) a^{2}+c$ is non-negative integer. Then all terms of the sequence $\left\{a_{n}\right\}$, defined by $a_{n+1}=p a_{n}+\sqrt{\left(p^{2}-1\right) a_{n}^{2}+c}, n \in \mathbb{N}$ with $a_{1}=a$, are natural numbers.

Remark.

Using idea of the second solution we consider another approach to the general case.
Let $a_{n+1}=p a_{n}+\sqrt{\left(p^{2}-1\right) a_{n}^{2}+c}, n \in \mathbb{N}, a_{1}>0, p>1$ and c such that $\left(p^{2}-1\right) a^{2}+c \geq 0$ then $a_{n}>0, n \in \mathbb{N}$ and $a_{n+1}^{2}-2 p a_{n} a_{n+1}+a_{n}^{2}=c \Longleftrightarrow$ $a_{n}^{2}-2 p a_{n} a_{n+1}=c-a_{n+1}^{2}$. Denoting $t_{n}:=\sqrt{\left(p^{2}-1\right) a_{n}^{2}+c}$ we obtain $a_{n+1}=p a_{n}+t_{n}$, and then $t_{n+1}^{2}:=\left(p^{2}-1\right) a_{n+1}^{2}+c=p^{2} a_{n+1}^{2}+c-a_{n+1}^{2}=$ $p^{2} a_{n+1}^{2}+a_{n}^{2}-2 p a_{n} a_{n+1}=\left(p a_{n+1}-a_{n}\right)^{2}=\left(\left(p^{2}-1\right) a_{n}+p t_{n}\right)^{2} \Longleftrightarrow$ $t_{n+1}=\left(p^{2}-1\right) a_{n}+p t_{n}$. From the system $\left\{\begin{array}{c}a_{n+1}=p a_{n}+t_{n} \\ t_{n+1}=\left(p^{2}-1\right) a_{n}+p t_{n}\end{array}\right.$ we obtain $t_{n+2}-2 p t_{n+1}+t_{n}=0$ and $a_{n+2}-2 p a_{n+1}+a_{n}=0$.

\star Problem 4.

Let sequence $\left\{b_{n}\right\}$ defined by $b_{n+1}-6 b_{n}+b_{n-1}=0$ with $b_{0}=\frac{1}{2}, \quad b_{1}=\frac{3}{2}$.
Prove that all terms of sequence $t_{n}:=\sqrt{2 b_{n}^{2}-\frac{1}{2}}, n \in \mathbb{N} \cup\{0\}$ are integers.

Solution.

Since $b_{2}=\frac{17}{2}$ and $b_{n+1} b_{n-1}-b_{n}^{2}=b_{n+1} b_{n-1}-b_{n}^{2}=$
$\left(6 b_{n}-b_{n-1}\right) b_{n-1}-b_{n}\left(6 b_{n-1}-b_{n-2}\right)=b_{n} b_{n-2}-b_{n-1}^{2}, n \geq 2$
then $b_{n+1} b_{n-1}-b_{n}^{2}=b_{2} b_{0}-b_{1}^{2}=2$.
From the other hand multiplying $b_{n+1}-6 b_{n}+b_{n-1}=0$ by b_{n-1}
and using $b_{n+1} b_{n-1}-b_{n}^{2}=2$ we obtain
$6 b_{n} b_{n-1}=b_{n+1} b_{n-1}+b_{n-1}^{2}=b_{n}^{2}+b_{n-1}^{2}+2$.
Let $x_{n}=2 b_{n}^{2}-\frac{1}{2}$. Then we have
$x_{n+1}=2 b_{n+1}^{2}-\frac{1}{2}=2\left(6 b_{n}-b_{n-1}\right)^{2}-\frac{1}{2}=$
$72 b_{n}^{2}-24 b_{n-1} b_{n}+2 b_{n-1}^{2}-\frac{1}{2}=72 b_{n}^{2}-4\left(b_{n}^{2}+b_{n-1}^{2}+2\right)+2 b_{n-1}^{2}-\frac{1}{2}=$
$68 b_{n}^{2}-2 b_{n-1}^{2}-8-\frac{1}{2}=34\left(2 b_{n}^{2}-\frac{1}{2}\right)+17-\left(2 b_{n-1}^{2}+\frac{1}{2}\right)-9=$
$34 x_{n}-x_{n-1}+8$.
Thus for $\left\{x_{n}\right\}$ we have $x_{n+1}-34 x_{n}+x_{n-1}=8, n \in \mathbb{N}, x_{0}=0, x_{1}=4$ and, by Theorem $1, x_{n}=t_{n}^{2}, n \in \mathbb{N} \cup\{0\}$, where $\left\{t_{n}\right\}$ defined by $t_{n+1}-6 t_{n}+t_{n-1}=0$ and $t_{0}=0, t_{1}=2$. $\left(q=1, p=6, M=2\left(x_{1}-6 \sqrt{x_{1} x_{0}}+x_{0}\right)=8\right)$.

Problem 5. (S. Harlampiev, Matematika 1989,No. 2 ,p.43,

 Bolgaria)Sequence $\left\{a_{n}\right\}$ defined as follow

$$
a_{1}=a_{2}=2, a_{n+2}=\frac{2 a_{n+1}-3 a_{n} a_{n+1}+17 a_{n}-16}{3 a_{n+1}-4 a_{n} a_{n+1}+18 a_{n}-17}, n \in \mathbb{N}
$$

a) Determine a_{n} as function of n;
b) Prove that all terms of the sequence $\left\{a_{n}\right\}$ can be represented
in the form $1+\frac{1}{m^{2}}$, where $m \in \mathbb{N}$.
Solution.
Using substitution $a_{n}=b_{n}+1$ we obtain $a_{n+2}=\frac{2 a_{n+1}-3 a_{n} a_{n+1}+17 a_{n}-16}{3 a_{n+1}-4 a_{n} a_{n+1}+18 a_{n}-17} \Longleftrightarrow$
$a_{n+2}-1=\frac{\left(a_{n}-1\right)\left(a_{n+1}-1\right)}{14\left(a_{n}-1\right)-4\left(a_{n}-1\right)\left(a_{n+1}-1\right)-\left(a_{n+1}-1\right)} \Longleftrightarrow$
$b_{n+2}=\frac{b_{n+1} b_{n}}{14 b_{n}-4 b_{n} b_{n+1}-b_{n+1}} \Longleftrightarrow \frac{1}{b_{n+2}}=\frac{14}{b_{n+1}}-\frac{1}{b_{n}}-4 \Longleftrightarrow$
$x_{n+2}-14 x_{n+1}+x_{n}=-4$, where $x_{n}=\frac{1}{b_{n}}=\frac{1}{a_{n}-1}$ and $x_{1}=x_{2}=1$.
Since $x_{0}=14 x_{1}-x_{2}-4=9$ and $14=p^{2}-2 q$ for $p=4, q=1$ then $2\left(x_{1}-p \sqrt{x_{1} x_{0}}+q x_{0}\right)=-4$
and, therefore, by Theorem $1 x_{n}=t_{n}^{2}, n \in \mathbb{N} \cup\{0\}$, where
$t_{n+1}-4 t_{n}+t_{n-1}=0, n \in \mathbb{N}$ and $t_{1}=t_{2}=1$.

Problem 6.

The sequence $\left(x_{n}\right)_{\mathbb{N}}$ is given by

$$
x_{n}=\frac{1}{4}\left((2+\sqrt{3})^{2 n-1}+(2-\sqrt{3})^{2 n-1}\right), n \in \mathbb{N} .
$$

Prove that each x_{n} equal to the sum of squares of two consecutive integers.

Solution.

First note that $x_{n}=\frac{2-\sqrt{3}}{4}(7+4 \sqrt{3})^{n}+\frac{2+\sqrt{3}}{4}(7-4 \sqrt{3})^{n}$ and, therefore, can be defined by recurrence

$$
\begin{equation*}
x_{n+1}-14 x_{n}+x_{n-1}=0, n \in \mathbb{N} \tag{1}
\end{equation*}
$$

with initial conditions $x_{0}=1, x_{1}=1$.
$\left(x_{2}=13=2^{2}+3^{2}, x_{3}=14 \cdot 13-1=9^{2}+10^{2}\right)$.
We will find a sequence (b_{n}) of integer numbers such that
$x_{n}=b_{n}^{2}+\left(b_{n}+1\right)^{2} \Longleftrightarrow 2 x_{n}-1=\left(2 b_{n}+1\right)^{2} \Longleftrightarrow y_{n}=a_{n}^{2}$,
where $y_{n}:=2 x_{n}-1$ and $a_{n}:=2 b_{n}+1$.
By substitution $x_{n}=\frac{y_{n}+1}{2}$ in the recurrence (1) we obtain

$$
\frac{y_{n+1}+1}{2}-14 \cdot \frac{y_{n}+1}{2}+\frac{y_{n-1}+1}{2}=0 \Longleftrightarrow y_{n+1}-14 y_{n}+y_{n-1}-12=0
$$

where $y_{0}=y_{1}=1$ and, therefore, $y_{2}=25$.
We will prove that a_{n} is defined by recurrence

$$
\begin{equation*}
a_{n+1}-4 a_{n}+a_{n-1}=0, n \in \mathbb{N} \tag{2}
\end{equation*}
$$

with initial conditions $a_{0}=-1, a_{1}=1$. Obvious that $a_{n} \in \mathbb{N}$.
Note that
$\left(a_{n+1}+a_{n-1}\right)^{2}=16 a_{n}^{2} \Longleftrightarrow a_{n+1}^{2}+a_{n-1}^{2}+2 a_{n+1} a_{n-1}=16 a_{n}^{2} \Longleftrightarrow$ $a_{n+1}^{2}+a_{n-1}^{2}-14 a_{n}^{2}=2\left(a_{n}^{2}-a_{n+1} a_{n-1}\right), a_{2}=4 \cdot a_{1}-a_{0}=4+1=5$.
Since $a_{n+1}^{2}-a_{n+2} a_{n}=a_{n+1}\left(4 a_{n}-a_{n-1}\right)-\left(4 a_{n+1}-a_{n}\right) a_{n}=a_{n}^{2}-a_{n-1} a_{n+1}$ for any $n \in \mathbb{N}$ then $a_{n}^{2}-a_{n-1} a_{n+1}=a_{1}^{2}-a_{0} a_{2}=1+5=6$ and,
therefore, $a_{n+1}^{2}+a_{n-1}^{2}-14 a_{n}^{2}=12$.
Since $a_{1}^{2}=y_{1}, a_{2}^{2}=y_{2}$ and both sequences $\left(y_{n}\right)_{n \geq 1},\left(a_{n}^{2}\right)_{n \geq 1}$ satisfies to the same recurrence then $y_{n}=a_{n}^{2}$ for any $n \in \mathbb{N}$.
By substitution $a_{n}=2 b_{n}+1$ in the recurrence (2) and initial conditions $a_{0}=-1, a_{1}=1$ we obtain
$2 b_{n+1}+1-4\left(2 b_{n}+1\right)+2 b_{n-1}+1=0 \Longleftrightarrow b_{n+1}-4 b_{n}+b_{n-1}=1, n \in \mathbb{N}$
and $b_{0}=-1, b_{1}=0$. And, of course b_{n}, is integer for any $n \in \mathbb{N}$
(For example $b_{2}=4 \cdot 0-(-1)+1=2, b_{3}=4 \cdot 2-0+1=9, .$.)

Problem 7 (M1174* KVANT)

Sequence of integers $a_{1}, a_{2}, \ldots, a_{n}, .$. is defined by recurrence

$$
a_{n+3}=2 a_{n+2}+2 a_{n+1}-a_{n}, n \in \mathbb{N}
$$

with initial conditions $a_{1}=1, a_{2}=12, a_{3}=20$.
Prove that for any natural n number $1+4 a_{n} a_{n+1}$ is the square of integer number.

Solution.

Since $a_{n+3}-2 a_{n+2}-2 a_{n+1}+a_{n}=a_{n+3}-3 a_{n+2}+a_{n+1}+$
$a_{n+2}-3 a_{n+1}+a_{n}=0 \Longleftrightarrow a_{n+3}-3 a_{n+2}+a_{n+1}=(-1)\left(a_{n+2}-3 a_{n+1}+a_{n}\right)$
we obtain other equivalent definition of sequence $\left(a_{n}\right)_{\mathbb{N}}$:

$$
\begin{aligned}
& \text { (1) } a_{n+2}-3 a_{n+1}+a_{n}=(-1)^{n-1}\left(a_{3}-3 a_{2}+a_{1}\right)= \\
& (-1)^{n-1}(20-36+1)=(-1)^{n} 15 .
\end{aligned}
$$

Remark.

By substitution $a_{n}=(-1)^{n} b_{n}$ in the recurrence (1) we obtain the
following eqivalent setting of original problem:
Sequence $\left(b_{n}\right)_{\mathbb{N}}$ is defined by recurrence
(2) $b_{n+2}+3 b_{n}+b_{n}=15$ with $b_{1}=-1, b_{2}=12$.

Prove that $1-4 b_{n} b_{n+1}$ is the square of integer number for any $n \in \mathbb{N}$.
But we will use another substitution $a_{n}=(-1)^{n}\left(c_{n}+3\right)$ which gives us convenient form for equivalent representation of our problem.
Namely, we have now linear homogenious recurrence

$$
\begin{aligned}
& c_{n+2}+3 c_{n+1}+c_{n}=0, n \in \mathbb{N} \text { with } c_{1}=-4, c_{2}=9 \\
& \text { and we have } 1+4 a_{n} a_{n+1}=1-4 b_{n} b_{n+1}=1-4\left(c_{n}+3\right)\left(c_{n+1}+3\right)= \\
& \quad-35-12 c_{n}-12 c_{n+1}-4 c_{n} c_{n+1} \text {. } \\
& \text { Since } c_{0}=3, \quad c_{n+1} c_{n-1}-c_{n}^{2}=c_{2} c_{0}-c_{1}^{2}=11 \text { and } \\
& c_{n-1}\left(c_{n+1}+3 c_{n}+c_{n-1}\right)=0 \Longleftrightarrow c_{n-1} c_{n+1}+3 c_{n} c_{n-1}+c_{n-1}^{2}=0 \\
& \text { we obtain } \\
& \quad 3 c_{n} c_{n-1}=-c_{n-1}^{2}-c_{n-1} c_{n+1}=-c_{n-1}^{2}-c_{n}^{2}-11 \text {. } \\
& \text { Thus, } 1+4 a_{n} a_{n+1}=-35-12 c_{n}-12 c_{n+1}+8 c_{n} c_{n+1}-12 c_{n} c_{n+1}= \\
& -35-12 c_{n}-12 c_{n+1}+8 c_{n} c_{n+1}+44+4 c_{n+1}^{2}+4 c_{n}^{2}= \\
& 4 c_{n+1}^{2}+4 c_{n}^{2}+9-12 c_{n}-12 c_{n+1}+8 c_{n} c_{n+1}=\left(2 c_{n+1}+2 c_{n}-3\right)^{2} \text {. }
\end{aligned}
$$

Let $t_{n}:=3-2 c_{n+1}-2 c_{n}$, then $1+4 a_{n} a_{n+1}=t_{n}^{2}$ where t_{n} satisfy to the recurrence $3-t_{n+1}+3\left(3-t_{n}\right)+3-t_{n-1}=0 \Longleftrightarrow$
$t_{n+1}+3 t_{n}+t_{n-1}=15$
and $t_{0}=3-2 c_{0}-2 c_{1}=5, t_{1}=3-2 c_{1}-2 c_{2}=-7$.

Remark. (Generator of such problems).

Let $\left\{t_{n}\right\}$ satisfy $t_{n+1}-p t_{n}+t_{n-1}=0, n \in \mathbb{N}$. Then, using identity $t_{n+1} t_{n-1}-t_{n}^{2}=t_{2} t_{0}-t_{1}^{2}$, we obtain
$t_{n+1}\left(t_{n+1}-p t_{n}+t_{n-1}\right)=0 \Longleftrightarrow p t_{n} t_{n+1}=t_{n+1}^{2}+t_{n+1} t_{n-1} \Longleftrightarrow$ $p t_{n} t_{n+1}=t_{n+1}^{2}+t_{n}^{2}-K, n \in \mathbb{N} \cup\{0\}$, where $K:=t_{1}^{2}-p t_{1} t_{0}+t_{0}^{2}$.
For arbitrary b we have
$(p+2)\left(t_{n}+b\right)\left(t_{n+1}+b\right)=(p+2)\left(t_{n} t_{n+1}+b\left(t_{n}+t_{n+1}\right)+b^{2}\right)=$ $p t_{n} t_{n+1}+2 t_{n} t_{n+1}+b(p+2)\left(t_{n}+t_{n+1}\right)+(p+2) b^{2}=$
$t_{n+1}^{2}+t_{n}^{2}-K+2 t_{n} t_{n+1}+b(p+2)\left(t_{n}+t_{n+1}\right)+(p+2) b^{2}=$ $\left(t_{n}+t_{n+1}\right)^{2}+b(p+2)\left(t_{n}+t_{n+1}\right)+(p+2) b^{2}-K=$
$\left(t_{n}+t_{n+1}+\frac{b(p+2)}{2}\right)^{2}-\frac{b^{2}(p+2)^{2}}{4}+(p+2) b^{2}-K=$
$\left(t_{n}+t_{n+1}+\frac{b(p+2)}{2}\right)^{2}-\frac{b^{2}\left(p^{2}-4\right)}{4}-K$. Thus,
$4(p+2)\left(t_{n}+b\right)\left(t_{n+1}+b\right)=\left(2 t_{n}+2 t_{n+1}+b(p+2)\right)^{2}-4 K-b^{2}\left(p^{2}-4\right) \Longleftrightarrow$
$4 K+b^{2}\left(p^{2}-4\right)+4(p+2)\left(t_{n}+b\right)\left(t_{n+1}+b\right)=\left(2 t_{n}+2 t_{n+1}+b(p+2)\right)^{2}$.
Denoting $x_{n}:=t_{n}+b_{n}$ we obtain that for $\left\{x_{n}\right\}$ defined by

$$
x_{n+1}-p x_{n}+x_{n-1}=b(2-p), n \in \mathbb{N} \text { and } x_{0}=t_{0}+b, x_{1}=t_{1}+b
$$

holds $4 K+b^{2}\left(p^{2}-4\right)+4(p+2) x_{n} x_{n+1}=\left(2 x_{n}+2 x_{n+1}+b(p-2)\right)^{2}$.
For $p=-3, t_{0}=3, t_{1}=-4$ and $b=3$ we obtain
$K=16+3(-12)+9=-11$,
$4 K+b^{2}\left(p^{2}-4\right)+4(p+2) x_{n} x_{n+1}=1-4 x_{n} x_{n+1}$ and
$\left(2 x_{n}+2 x_{n+1}+b(p-2)\right)^{2}=\left(2 x_{n}+2 x_{n+1}-3\right)^{2}$.

More generalizations.

1.First we will find recurrence for $\left\{t_{n} t_{n+1}\right\}$.

Since $t_{n+1}^{2}-\left(p^{2}-2\right) t_{n}^{2}+t_{n-1}^{2}=2 K, n \in \mathbb{N}$ and
$p t_{n} t_{n+1}=t_{n+1}^{2}+t_{n}^{2}-K, n \in \mathbb{N} \cup\{0\}$
then $p\left(t_{n+1} t_{n+2}-\left(p^{2}-2\right) t_{n} t_{n+1}+t_{n-1} t_{n}\right)=$
$p t_{n+1} t_{n+2}-\left(p^{2}-2\right) p t_{n} t_{n+1}+p t_{n-1} t_{n}=$
$t_{n+2}^{2}+t_{n+1}^{2}-K-\left(p^{2}-2\right)\left(t_{n+1}^{2}+t_{n}^{2}-K\right)+t_{n}^{2}+t_{n-1}^{2}-K=$
$\left(t_{n+2}^{2}-\left(p^{2}-2\right) t_{n+1}^{2}+t_{n}^{2}\right)+\left(t_{n+1}^{2}-\left(p^{2}-2\right) t_{n}^{2}+t_{n-1}^{2}\right)-4 K-p^{2} K=-p^{2} K \Longleftrightarrow$
$t_{n+1} t_{n+2}-\left(p^{2}-2\right) t_{n} t_{n+1}+t_{n-1} t_{n}=-p K$.

2.Lemma.

Let $\left\{t_{n}\right\}$ satisfy $t_{n+1}-p t_{n}+t_{n-1}=0, n \in \mathbb{N}$.
Then for any $p \notin\{0,-1,2,-2\}$ there is $m \in \mathbb{N}$ such

$$
\left(t_{m+3}-t_{m+1}\right)\left(t_{m+2}-t_{m}\right)\left(t_{m+2}-t_{m+1}\right) \neq 0
$$

Proof.

Consider following cases.
i. There is m such that $t_{m}=t_{m+1}$ then due to homogeneity of the recurrence $t_{n+1}-p t_{n}+t_{n-1}=0, n \in \mathbb{N}$ we can suppose
that $t_{m}=t_{m+1}=1$.Also, without loss of generalty, we can assume that $m=0$.

So, we have $t_{0}=t_{1}=1, t_{2}=p-1, t_{3}=p(p-1)-1=p^{2}-p-1$,
Then $t_{3}-t_{1}=p^{2}-p-1-1=p^{2}-p-2=(p-2)(p+1) \neq 0$,
$t_{2}-t_{0}=t_{2}-t_{1}=p-2 \neq 0$.
Thus, $\left(t_{m+3}-t_{m+1}\right)\left(t_{m+2}-t_{m}\right)\left(t_{m+2}-t_{m+1}\right) \neq 0$ for $m=0$;
ii. There is m such that $t_{m}=t_{m+2}$ then due to homogeneity of the recurrence $t_{n+1}-p t_{n}+t_{n-1}=0, n \in \mathbb{N}$ we can suppose that
$t_{m}=t_{m+2}=p$. Also, without loss of generalty we can assume that $m=0$.
So, we have $t_{0}=t_{2}=p$.Then, $p t_{1}=t_{0}+t_{2}=2 p \Longrightarrow t_{1}=2$ and
$t_{3}=p^{2}-2, t_{4}=p\left(p^{2}-2\right)-p=p^{3}-3 p$.
Hence, $t_{4}-t_{2}=p^{3}-3 p-p=p\left(p^{2}-4\right) \neq 0$,
$t_{3}-t_{1}=p^{2}-2-2=p^{2}-4 \neq 0, t_{3}-t_{2}=p^{2}-2-p=(p-2)(p+1) \neq 0$.
Thus, $\left(t_{m+3}-t_{m+1}\right)\left(t_{m+2}-t_{m}\right)\left(t_{m+2}-t_{m+1}\right) \neq 0$ for $m=1$.

Theorem.

Let $\left\{t_{n}\right\}$ satisfy $t_{n+1}-p t_{n}+t_{n-1}=0, n \in \mathbb{N}$ and let $p \notin\{0,-1,2,-2\}$.
Then sequences $\left(t_{n} t_{n+1}\right)_{n \geq 0},\left(t_{n}+t_{n+1}\right)_{n \geq 0},(1)_{n \geq 0}$ are linearly independent, i.e $\alpha t_{n} t_{n+1}+\beta\left(t_{n}+t_{n+1}\right)+\gamma=0$ for any $n \in \mathbb{N} \cup\{0\}$ iff $\alpha=\beta=\gamma=0$.

Proof.

Suppose that there are α, β, γ not all equal to zero such that
$\alpha t_{n} t_{n+1}+\beta\left(t_{n}+t_{n+1}\right)+\gamma=0$, for any $n \in \mathbb{N} \cup\{0\}$, then (α, β, γ)
be solution of the system

$$
\left\{\begin{array}{c}
\alpha t_{n} t_{n+1}+\beta\left(t_{n}+t_{n+1}\right)+\gamma=0 \\
\alpha t_{n+1} t_{n+2}+\beta\left(t_{n+1}+t_{n+2}\right)+\gamma=0 \\
\alpha t_{n+2} t_{n+3}+\beta\left(t_{n+2}+t_{n+3}\right)+\gamma=0
\end{array}\right.
$$

for any $n \in \mathbb{N} \cup\{0\}$.

$$
\begin{aligned}
& \text { Note that } \\
& \operatorname{det}\left(\begin{array}{ccc}
t_{n} t_{n+1} & t_{n}+t_{n+1} & 1 \\
t_{n+1} t_{n+2} & t_{n+1}+t_{n+2} & 1 \\
t_{n+2} t_{n+3} & t_{n+2}+t_{n+3} & 1
\end{array}\right)= \\
& \left(t_{n+3}-t_{n+1}\right)\left(t_{n+2}-t_{n}\right) \operatorname{det}\left(\begin{array}{ccc}
t_{n} t_{n+1} & t_{n}+t_{n+1} & 1 \\
t_{n+1} & 1 & 0 \\
t_{n+2} & 1 & 0
\end{array}\right)= \\
& \left(t_{n+3}-t_{n+1}\right)\left(t_{n+2}-t_{n}\right)\left(t_{n+2}-t_{n+1}\right) .
\end{aligned}
$$

Since by Lemma always exist at least one m such that

$$
\begin{aligned}
& \left(t_{m+3}-t_{m+1}\right)\left(t_{m+2}-t_{m}\right)\left(t_{m+2}-t_{m+1}\right) \neq 0 \text { then from system } \\
& \qquad\left\{\begin{array}{c}
\alpha t_{m} t_{m+1}+\beta\left(t_{m}+t_{m+1}\right)+\gamma=0 \\
\alpha t_{m+1} t_{m+2}+\beta\left(t_{m+1}+t_{m+2}\right)+\gamma=0 \quad \text { follows } \alpha=\beta=\gamma=0 . \\
\alpha t_{m+2} t_{m+3}+\beta\left(t_{m+2}+t_{m+3}\right)+\gamma=0
\end{array}\right.
\end{aligned}
$$

Let $f(x, y):=a\left(x^{2}+y^{2}\right)+b x y+c(x+y)+d$ then $f\left(t_{n}, t_{n+1}\right)=$
$a\left(t_{n}^{2}+t_{n+1}^{2}\right)+b t_{n} t_{n+1}+c\left(t_{n}+t_{n+1}\right)+d=$
$a\left(p t_{n} t_{n+1}+K\right)+b t_{n} t_{n+1}+c\left(t_{n}+t_{n+1}\right)+d=$
$(a p+b) t_{n} t_{n+1}+c\left(t_{n}+t_{n+1}\right)+d+a K$.

Theorem 5.

Let sequence $\left\{t_{n}\right\}$ satisfy $t_{n+1}-p t_{n}+t_{n-1}=0, n \in \mathbb{N}$ where $p \notin\{0,-1,2,-2\}$ and $t_{0}^{2}+t_{1}^{2} \neq 0$ then $f\left(t_{n}, t_{n+1}\right)=\left(\alpha t_{n}+\alpha t_{n+1}+\beta\right)^{2}, n \in \mathbb{N} \cup\{0\}$ for some α and β iff

$$
\left\{\begin{aligned}
a p+b & =\alpha^{2}(2+p) \\
c & =2 \alpha \beta \\
d+a K & =\beta^{2}+\alpha^{2} K
\end{aligned}\right.
$$

Proof.
Since
$\left(\alpha t_{n}+\alpha t_{n+1}+\beta\right)^{2}=\alpha^{2}\left(t_{n}^{2}+t_{n+1}^{2}\right)+2 \alpha^{2} t_{n} t_{n+1}+2 \alpha \beta\left(t_{n}+t_{n+1}\right)+\beta^{2}=$
$\alpha^{2}\left(p t_{n} t_{n+1}+K\right)+2 \alpha^{2} t_{n} t_{n+1}+2 \alpha \beta\left(t_{n}+t_{n+1}\right)+\beta^{2}=$
$\alpha^{2}(2+p) t_{n} t_{n+1}+2 \alpha \beta\left(t_{n}+t_{n+1}\right)+\beta^{2}+\alpha^{2} K$ then by Theorem
$f\left(t_{n}, t_{n+1}\right)=\left(\alpha t_{n}+\alpha t_{n+1}+\beta\right)^{2}, n \in \mathbb{N} \cup\{0\} \Longleftrightarrow$
$\left(a p+b-\alpha^{2}(2+p)\right) t_{n} t_{n+1}+(c-2 \alpha \beta)\left(t_{n}+t_{n+1}\right)+$
$d+a K-\beta^{2}-\alpha^{2} K=0, n \in \mathbb{N} \cup\{0\}$
iff $a p+b=\alpha^{2}(2+p), c=2 \alpha \beta$ and $d+a K=\beta^{2}+\alpha^{2} K$.

More general analysis associated with problem 7.

First, we will find recurrence for sequence $\left(a_{n}^{2}\right)$ where $\left(a_{n}\right)$ be defined by recurrence

$$
a_{n+1}-2 p a_{n}+a_{n-1}=0, n \in \mathbb{N} .
$$

Since $4 p^{2} a_{n}^{2}=a_{n+1}^{2}+a_{n-1}^{2}+2 a_{n+1} a_{n-1}$ and

$$
M:=a_{2} a_{0}-a_{1}^{2}=a_{n+1} a_{n-1}-a_{n}^{2}, n \in \mathbb{N}
$$

we obtain $4 p^{2} a_{n}^{2}=a_{n+1}^{2}+a_{n-1}^{2}+2 a_{n}^{2}+2 M \Longleftrightarrow$
$a_{n+1}^{2}-2\left(2 p^{2}-1\right) a_{n}^{2}+a_{n-1}^{2}=-2 M$.
Second, we will find recurrence for sequence ($a_{n} a_{n+1}$)
Multiplying both sides of recurrence $a_{n+2}-2 p a_{n+1}+a_{n}=0$ by a_{n}
we obtain $a_{n+2} a_{n}-2 p a_{n+1} a_{n}+a_{n}^{2}=0 \Longleftrightarrow 2 p a_{n+1} a_{n}=a_{n+1}^{2}+a_{n}^{2}+M$.
Hence, $2 p\left(a_{n+2} a_{n+1}-2\left(2 p^{2}-1\right) a_{n+1} a_{n}+a_{n} a_{n-1}\right)=$
$a_{n+2}^{2}+a_{n+1}^{2}+M-2\left(2 p^{2}-1\right) a_{n+1}^{2}-2\left(2 p^{2}-1\right) a_{n}^{2}-4 p^{2} M+$
$2 M+a_{n}^{2}+a_{n-1}^{2}+M=a_{n+2}^{2}-2\left(2 p^{2}-1\right) a_{n+1}^{2}+a_{n}^{2}+2 M+a_{n+1}^{2}-$
$2\left(2 p^{2}-1\right) a_{n}^{2}+a_{n-1}^{2}+2 M-4 p^{2} M=-4 p^{2} M \Longleftrightarrow$
$a_{n+2} a_{n+1}-2\left(2 p^{2}-1\right) a_{n+1} a_{n}+a_{n} a_{n-1}=-2 p M$.
This is interesting recurrence, but more important now correlation

$$
2 p a_{n+1} a_{n}=a_{n+1}^{2}+a_{n}^{2}+M
$$

because in the first, it show the way how construct problems like
Problem 7 and in the second it is the base for the following
generalization, namely we will prove that for any natural m holds representation

$$
a_{n} a_{n+m}=\alpha_{m} a_{n}^{2}+\beta_{m} a_{n+1}^{2}+\gamma_{m} .
$$

1. We start from the special linear combination of a_{n} and a_{n+1}, namely let α, β be arbitrary real number then
$\left(\alpha a_{n+1}+\alpha a_{n}+\beta\right)^{2}=\alpha^{2}\left(a_{n+1}^{2}+a_{n}^{2}+M\right)+\beta^{2}-\alpha^{2} M+$ $2 \alpha^{2} a_{n+1} a_{n}+2 \alpha \beta a_{n+1}+2 \alpha \beta a_{n}=$

About quadratically p-q generated sequences.
$2 p \alpha^{2} a_{n+1} a_{n}+2 \alpha^{2} a_{n+1} a_{n}+2 \alpha \beta a_{n+1}+2 \alpha \beta a_{n}+\beta^{2}-\alpha^{2} M=$
$2 \alpha^{2}(p+1) a_{n+1} a_{n}+2 \alpha \beta a_{n+1}+2 \alpha \beta a_{n}+\beta^{2}-\alpha^{2} M$.
So, for given p, α, β, a, b, if $a_{n+1}-2 p a_{n}+a_{n-1}=0, n \in \mathbb{N}$
with $a_{0}=a, a_{1}=b$ then $M=2 p a b-a_{2}-b^{2}$ and
$2 \alpha^{2}(p+1) a_{n+1} a_{n}+2 \alpha \beta a_{n+1}+2 \alpha \beta a_{n}+\beta^{2}-\alpha^{2} M=\left(\alpha a_{n+1}+\alpha a_{n}+\beta\right)^{2}$.
Note,that for $\alpha=2, \beta=-3, p=-\frac{3}{2}, a=3, b=-4$ we obtain

$$
-4 a_{n+1} a_{n}-12 a_{n+1}-12 a_{n}+9-4(36-9-16)=
$$

$$
-4 a_{n+1} a_{n}-12 a_{n+1}-12 a_{n}-35=\left(2 a_{n+1}+2 a_{n}-3\right)^{2}
$$

For some suitable constant $\delta, \eta, \theta, \zeta$ we can consider quadratic form
$\delta a_{n+1}^{2}+\eta a_{n+1} a_{n}+\delta a_{n}^{2}+\theta a_{n+1}+\theta a_{n}+\zeta$ which with using identity
$2 p a_{n+1} a_{n}=a_{n+1}^{2}+a_{n}^{2}+M$ can be transformed to the $\left(\alpha a_{n+1}+\alpha a_{n}+\beta\right)^{2}$.
It should be constant $\delta, \eta, \theta, \zeta$ such that
$\eta+2 p \delta=2 \alpha^{2}(p+1), \theta=2 \alpha \beta, \zeta-\delta M=\beta^{2}-\alpha^{2} M$.
Other, more difficult problem can be constructed if we use sum of
two squares $\left(\alpha a_{n+1}+\alpha a_{n}+\beta\right)^{2}+\left(\gamma a_{n+1}+\delta a_{n}+\lambda\right)^{2}$.
2. Since $\alpha_{m+1} a_{n}^{2}+\beta_{m+1} a_{n+1}^{2}+\gamma_{m+1}=a_{n} a_{n+m+1}=$
$2 p a_{n} a_{n+m}-a_{n} a_{n+m-1}=$
$2 p\left(\alpha_{m} a_{n}^{2}+\beta_{m} a_{n+1}^{2}+\gamma_{m}\right)-\left(\alpha_{m-1} a_{n}^{2}+\beta_{m-1} a_{n+1}^{2}+\gamma_{m-1}\right)$
we can see that α_{m}, β_{m} and γ_{m} satisfy to the same recurrence
$x_{m+1}-2 p x_{m}+x_{m-1}=0$ but have different initial conditions.
From $a_{n}^{2}=1 \cdot a_{n}^{2}+0 \cdot a_{n+1}^{2}+0$ we obtain $\alpha_{0}=1, \beta_{0}=0$ and $\gamma_{0}=0$.
From $a_{n} a_{n+1}=\frac{1}{2 p} a_{n}^{2}+\frac{1}{2 p} a_{n+1}^{2}+\frac{M}{2 p}$ we obtain

$$
\alpha_{1}=\frac{1}{2 p}, \beta_{1}=\frac{1}{2 p} \text { and } \gamma_{1}=\frac{M}{2 p}
$$

For example $\alpha_{2}=2 p \cdot \frac{1}{2 p}-1=0, \beta_{2}=2 p \cdot \frac{1}{2 p}-0=1, \gamma_{2}=2 p \cdot \frac{M}{2 p}-0=M$, thus $a_{n} a_{n+2}=a_{n+1}^{2}+M$;
$\alpha_{3}=2 p \cdot 0-\frac{1}{2 p}=-\frac{1}{2 p}, \beta_{3}=2 p \cdot 1-\frac{1}{2 p}=\frac{4 p^{2}-1}{2 p}, \gamma_{3}=2 p \cdot M-\frac{M}{2 p}=$
$\frac{M\left(4 p^{2}-1\right)}{2 p}$,thus $a_{n} a_{n+3}=-\frac{a_{n}^{2}}{2 p}+\frac{a_{n+1}^{2}\left(4 p^{2}-1\right)}{2 p}+\frac{M\left(4 p^{2}-1\right)}{2 p}$.
Using representation $a_{n} a_{n+m}=\alpha_{m} a_{n}^{2}+\beta_{m} a_{n+1}^{2}+\gamma_{m}$ we obtain
$a_{n+1} a_{n+m+1}-2\left(2 p^{2}-1\right) a_{n} a_{n+m}+a_{n-1} a_{n+m-1}=$
$\alpha_{m}\left(a_{n+1}^{2}-2\left(2 p^{2}-1\right) a_{n}^{2}+a_{n-1}^{2}\right)+\beta_{m}\left(a_{n+2}^{2}-2\left(2 p^{2}-1\right) a_{n+1}^{2}+a_{n}^{2}\right)+\gamma_{m}\left(1-2\left(2 p^{2}-1\right)+1\right)=$ $-2 M\left(\alpha_{m}+\beta_{m}\right)+4\left(1-p^{2}\right) \gamma_{m}$.
Thus, for any fixed $m \geq 0$ we have the following recurrence for $a_{n} a_{n+m}$:
$a_{n+1} a_{n+m+1}-2\left(2 p^{2}-1\right) a_{n} a_{n+m}+a_{n-1} a_{n+m-1}=-2 M\left(\alpha_{m}+\beta_{m}\right)+4\left(1-p^{2}\right) \gamma_{m}$.

